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Let us consider A, B two abelian categories.

1. Let S be the category of short exact sequences in A, and δ a homological δ-functor
with additive functors {Ti : A → B}i≥0.
For i ≥ 0 we call Fi the functor S → B which sends the short exact sequence

0 → A → B → C → 0

onto the object Ti(C), and the morphism f•

0 A B C 0

0 A′ B′ C ′ 0

f2 f1 f0

onto the morphism Ti(f0) in B.
Similarly we define the functor Gi : S → B which sends the short exact sequence

0 → A → B → C → 0

onto the object Ti(A), and the morphism f•

0 A B C 0

0 A′ B′ C ′ 0

f2 f1 f0

onto the morphism Ti(f2) in B.
These are both well defined functors since each Ti is a functor.
Since for each i ≥ 0, δi assigns to each object

0 → A → B → C → 0

in S a morphism Ti(C) → Ti−1(A), for δi to be a natural transformation Fi ⇒ Gi−1
it remains to show naturality, which is to say that for all morphisms of short exact
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sequences
0 A B C 0

0 A′ B′ C ′ 0

f2 f1 f0

the diagram

Ti(C) Ti−1(A)

Ti(C ′) Ti−1(A′)

δi(0→A→B→C→0)

Ti(f2)=Fi(f•) Ti−1(f0)=Gi−1(f•)

δi(0→A′→B′→C′→0)

commutes. This is the case because δ is a homological δ-functor which allows us to
conclude.

2. Suppose first that P• is a projective object in Ch(A).
We then have that P•[−1] is also projective because for any diagram

P•[−1]

A• B•

the projectiveness of P• means we have a morphism which makes the induced diagram

P•

A•[+1] B•[+1]

commute. Taking the induced morphism P•[−1] → A• makes the diagram

P•[−1]

A• B•

commute.

We can then consider the diagram

P•[−1]

Cone(P•) P•[−1]

IdP•[−1]

π1
•
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where the morphism π1
• is projection onto the first element

π1
n : Cone(P•)n = Pn−1 ⊕ Pn → Pn−1 = P•[−1]n,

and similarly π2
• as used below is projection onto the second element.

The projectiveness of P•[−1] means we have a morphism of chain complexes

ψ• : P•[−1] → Cone(P•)

such that π1
• ◦ ψ• = IdP•[−1].

This identity and ψ• being a chain morphism yield the following equalities for all
n ∈ Z:

π1
n ◦ ψn = IdPn−1

ψn ◦ dPn = d
Cone(P )
n+1 ◦ ψn+1.

Using the definition of the chain maps for the cone of P• and plugging in the first
equation gives

π2
n ◦ ψn ◦ dPn = π2

n ◦ dCone(P )
n+1 ◦ ψn+1

= π2
n ◦

[
−dPn 0
IdPn dPn+1

]
◦ ψn+1

=
[
IdPn dPn+1

]
◦ ψn+1

= π1
n+1 ◦ ψn+1 + dPn+1 ◦ π2

n+1 ◦ ψn+1

= IdPn + dPn+1 ◦ π2
n+1 ◦ ψn+1

so
IdPn = (π2

n ◦ ψn) ◦ dPn − dPn+1 ◦ (π2
n+1 ◦ ψn+1)

which means that the identity is nullhomotopic, and P• is split exact.

To show that each Pn is projective we fix n ∈ Z and consider any diagram

Pn

A B

f

π

where π is epi, and then construct the morphism of chain complexes

0 A A 0

0 B B 0

IdA

π π

IdB
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where the chain complexes on top and bottom have non-zero elements only in the
(n+1)-th and n-th positions, noting that it is epi since π is. We also have a morphism
of chain complexes

Pn+2 Pn+1 Pn Pn−2

0 B B 0

dP
n+2 dP

n+1

f◦dP
n+1

dP
n

f

IdB

which allows us to use the projectiveness of P• to obtain a morphism of chain com-
plexes g• such that the diagram

Pn+2 Pn+1 Pn Pn−2

0 A A 0

0 B B 0

dP
n+2 dP

n+1

gn+1

f◦dP
n+1

dP
n

gnf

IdA

π π

IdB

commutes. This directly implies the commutativity of the diagram

Pn

A B

gn
f

π

and the arbitrary choice of n ∈ Z allows us to conclude.

We have now shown that

P• is a projective object in Ch(A)
=⇒ P• is split exact and each Pn is projective in A

and go about about proving the converse.

Let P• be a chain complex in Ch(A) which is split exact and such that each Pn
is projective in A.

Option 1:
P• being split exact means we have morphisms ψn : Pn → Pn+1 such that

ψn−1 ◦ dPn + dPn+1 ◦ ψn = IdPn
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for all n ∈ Z.
Let us consider two chain morphisms f• and π•

A1 A0 A−1

B1 B0 B−1

P1 P0 P−1

dA
1

π1

dA
0

π0 π−1

dB
1 dB

0
f1

dP
1

f0

dP
0

f−1

where π• is epi.
The projectiveness of each Pn means we have morphisms hn : Pn → An which make
the diagram

Pn

An Bn

hn
fn

πn

commute for each n ∈ Z.
We claim that setting

gn := dAn+1 ◦ hn+1 ◦ ψn + hn ◦ ψn−1 ◦ dPn : Pn → An

for each n ∈ Z will give the identity

f• = π• ◦ g•.

This is easily verified since for all n ∈ Z we have

πn ◦ gn = πn ◦ (dAn+1 ◦ hn+1 ◦ ψn + hn ◦ ψn−1 ◦ dPn )
= dBn+1 ◦ πn+1 ◦ hn+1 ◦ ψn + fn ◦ ψn−1 ◦ dPn
= dBn+1 ◦ fn+1 ◦ ψn + fn ◦ ψn−1 ◦ dPn
= fn ◦ (ψn−1 ◦ dPn + dPn+1 ◦ ψn)
= fn ◦ IdPn

= fn

by using the fact that ψn, ψn−1 are homotopy maps.

Additionally, g• is a well-defined chain morphism because

dAn ◦ gn = dAn ◦ (dAn+1 ◦ hn+1 ◦ ψn + hn ◦ ψn−1 ◦ dPn )
= dAn ◦ hn ◦ ψn−1 ◦ dPn
= (dAn ◦ hn ◦ ψn−1 + hn−1 ◦ ψn−2 ◦ dPn−1) ◦ dPn
= gn−1 ◦ dPn
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for all n ∈ Z.

Since the chain complex A• was chosen arbitrarily we conclude that P• is projec-
tive.

Option 2:
P• being split exact means we have morphisms ψn : Pn → Pn+1 such that

ψn−1 ◦ dPn + dPn+1 ◦ ψn = IdPn

for all n ∈ Z.
The existence of such morphisms means that the chain complex is exact and also
allows us to construct the isomorphism

[
dPn+1 ◦ ψn

dPn

]
: Pn → ker(dPn ) ⊕ im(dPn )

with inverse

[
ιn ψn−1

]
: ker(dPn ) ⊕ im(dPn ) → Pn

for all n ∈ Z.
We would like to show that

Pn+1 Pn Pn−1

ker(dPn+1) ⊕ im(dPn+1) ker(dPn ) ⊕ im(dPn ) ker(dPn−1) ⊕ im(dPn−1)

dP
n+1[

dP
n+2◦ψn+1

dP
n+1

] dP
n[

dP
n+1◦ψn

dP
n

] [
dP

n ◦ψn−1

dP
n−1

]

is an isomorphism of chain complexes, where the differentials of the chain on the

bottom are all of the form
[
0 ϕn
0 0

]
, with ϕn being isomorphisms given by the exactness

of the chain complex P•.
This is the case because by choosing the ϕn appropriately, we can use Freyd-Mitchell’s
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embedding theorem and suppose that ϕn is the identity, which then means

[
dPn ◦ ψn−1
dPn−1

]
◦ dPn =

[
dPn ◦ ψn−1 ◦ dPn
dPn−1 ◦ dPn

]

=
[
dPn ◦ (IdPn − dPn+1 ◦ ψn)

0

]

=
[
dPn
0

]

=
[
ϕn ◦ dPn

0

]

=
[
0 ϕn
0 0

]
◦

[
dPn+1 ◦ ψn

dPn

]
.

Finally, there is an isomorphism between the chain complex on the bottom row and
the direct sum over every n ∈ Z of the chain complexes P (n)

0 im(dPn ) ker(dPn−1) 0

n-th position in the chain complex

ϕn

because the former satisfies the universal properties of the product and coproduct.

This means that it is enough to show that the direct sum is projective, for which
it is enough to show that each individual element in the direct sum is projective.

To this end, fix n ∈ Z and suppose we have morphisms of chain complexes

P (n)

A B

f•

π•

where π• is epi.

Since Pn ∼= ker(dPn ) ⊕ im(dPn ) is projective, im(dPn ) must be as well, so there exists a
morphism gn : im(dPn ) → An such that πn ◦gn = fn. Now setting gn−1 = dAn ◦gn ◦ϕ−1

n ,
and completing g• : P (n) → A• everywhere else with zero morphisms we have that
g• is a well defined morphism of chain complexes by definition of gn−1, and satisfies
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π• ◦ g• = f•. At every index other that n− 1 this is immediate, and at n− 1 we have

πn−1 ◦ gn−1 = πn−1 ◦ dAn ◦ gn ◦ ϕ−1
n

= dBn ◦ πn ◦ gn ◦ ϕ−1
n

= dBn ◦ fn ◦ ϕ−1
n

= fn−1

because π• and f• are both morphisms of chain complexes.

We therefore have that each P (n) is projective which allows us to conclude.

3. Suppose that A has enough projectives, and let A• be a chain complex in Ch(A).
For all n ∈ Z we have a projective object Pn in A and an epi fn : Pn → An.
These projective objects define a chain complex

P2 ⊕ P1 P1 ⊕ P0 P0 ⊕ P−1

with differentials
[
0 Id
0 0

]
.

Setting Qn := Pn+1 ⊕Pn we may call this chain complex Q•, and we claim that setting

gn :=
[
dAn+1 ◦ fn+1 fn

]
: Qn → An

for all n ∈ Z defines a chain morphism g• : Q• → A•.
This is the case because

dAn ◦ gn = dAn ◦
[
dAn+1 ◦ fn+1 fn

]
=

[
dAn ◦ dAn+1 ◦ fn+1 dAn ◦ fn

]
=

[
0 dAn ◦ fn

]
=

[
0 dAn ◦ fn ◦ IdPn

]
=

[
dAn ◦ fn fn−1

]
◦

[
0 IdPn

0 0

]
= gn−1 ◦ dQn .

Moreover, each map gn is epi, because its second component, fn, is epi. Using Freyd-
Mitchell it is easy to see that any map from a direct sum of two objects to a third
object is epi if either of its two components are epi. Therefore g• is epi in Ch(A).

The maps ψn : Qn = Pn+1 ⊕ Pn → Pn+2 ⊕ Pn+1 = Qn+1 given by
[

0 0
Id 0

]
are

homotopy maps between the identity and 0 on Q•, because

dQn+1 ◦ ψn =
[
Id 0
0 0

]
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and
ψn−1 ◦ dQn =

[
0 0
0 Id

]
so,

IdQn = ψn−1 ◦ dQn + dQn+1 ◦ ψn.

Finally, using the result of the previous exercise, it remains to show that each
Qn = Pn+1 ⊕ Pn is projective for us to have defined a projective chain complex Q•
and an epi g• : Q• → A•.
This is immediate since each Pn is projective.

4. Suppose we have the following diagram in A

0

P ′
2 P ′

1 P ′
0 A′ 0

A

P ′′
2 P ′′

1 P ′′
0 A′′ 0

0

ϵ′

ιA

πA

ϵ′′

where the column is exact and the rows are projective resolutions.
We set Pi := P ′

i ⊕P ′′
i and use the canonical injection and projection associated to the

direct sum to extend the diagram

0 0 0 0

P ′
2 P ′

1 P ′
0 A′ 0

P2 P1 P0 A

P ′′
2 P ′′

1 P ′′
0 A′′ 0

0 0 0 0

ι2 ι1

ϵ′

ι0 ιA

π2 π1 π0 πA

ϵ′′

noting that the columns are all exact because A is abelian.
We will now construct the chain maps for P• by induction such that ι• becomes a
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chain map P ′
• → P• and π• becomes a chain map P• → P ′′

• , and P• is a projective
resolution of A.
In fact we only have to guarantee the first two conditions because by the long exact
sequence of homology groups of

0 → P ′
• → P• → P ′′

• → 0

any such chain maps would make the sequence exact.

At step zero we define ϵ : P0 → A by setting ϵ =
[
f ′

0 f ′′
0

]
, where f ′

0 = ιA ◦ ϵ′,
and f ′′

0 is given by the projectiveness of P ′′
0 , making the diagram

A

P ′′
0 A′′

πA
f ′′

0

ϵ′′

commute (πA is epi because the column is exact).

For n ≥ 1, we write dPn =
[
f ′
n f ′′

n

g′
n g′′

n

]
.

Considering the diagram

P ′
n P ′

n−1

Pn Pn−1

P ′′
n P ′′

n−1

dP ′
n

ιn ιn−1

dP
n

πn πn−1

dP ′′
n

we observe that the top square commutes if and only if f ′
n = dP

′
n and g′

n = 0. If this is
the case then the bottom square commutes if and only if g′′

n = dP
′′

n . This means that

the diagram commutes if and only if dPn =
[
dP

′
n f ′′

n

0 dP
′′

n

]
for some morphism f ′′

n .

We define the morphisms f ′′
n by induction such that dPn ◦ dPn−1 = 0.

If n = 1 then we have dPn ◦ dPn−1 =
[
f ′

0 ◦ dP ′
1 f ′

0 ◦ f ′′
1 + f0 ◦ dP ′′

1

]
. Given that

f ′
0 = ιA ◦ ϵ′ and that ϵ′ and dP

′
1 and consecutive maps in a projective resolution, we

need f ′′
n such that

f ′
0 ◦ f ′′

n = −f ′′
0 ◦ dP ′′

1 .
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We notice that by definition of f ′′
0 we have

πA ◦ (−f ′′
0 ◦ dP ′′

1 ) = −πA ◦ f ′′
0 ◦ dP ′′

1

= −ϵ′′ ◦ dP ′′
1

= 0
so by exactness of the column in our very first diagram we have a diagram

P ′′
1

P ′
0 im(ι)

f ′′
n

−f ′′
0 ◦dP ′′

1

f ′
0=ιA◦ϵ′

that is completed by a morphism f ′′
n by projectiveness of P ′′

1 , since the bottom mor-
phism is epi because ϵ′ is.

Suppose now that the morphisms f ′′
n−1, ..., f ′′

1 have all been constructed, for n > 1.

We have dPn ◦dPn−1 =
[
dP

′
n−1 ◦ dP ′

n dP
′

n−1 ◦ f ′′
n + f ′′

n−1 ◦ dP ′′
n

0 dP
′′

n−1 ◦ dP ′′
n

]
=

[
0 dP

′
n−1 ◦ f ′′

n + f ′′
n−1 ◦ dP ′′

n

0 0

]
,

so we want to find f ′′
n such that

dP
′

n−1 ◦ f ′′
n = −f ′′

n−1 ◦ dP ′′
n .

By the inductive argument we have that
dP

′
n−2 ◦ (−f ′′

n−1 ◦ dP ′′
n ) = −(dP ′

n−2 ◦ f ′′
n−1) ◦ dP ′′

n

= −(−f ′′
n−2 ◦ dP ′′

n−1) ◦ dP ′′
n

= f ′′
n−2 ◦ 0

= 0
if n > 2, and if n = 2 we have

ιA ◦ (dP ′
0 ◦ (−f ′′

1 ◦ dP ′′
2 )) = −(ιA ◦ dP ′

0 ◦ f ′′
1 ) ◦ dP ′′

2

= −(−f ′′
0 ◦ dP ′′

1 ) ◦ dP ′′
2

= f ′′
0 ◦ 0

= 0

which means dP ′
n−2 ◦ (−f ′′

n−1 ◦ dP ′′
n ) = 0 since ιA is mono.

Therefore by projectiveness of P ′′
n we can complete the diagram

P ′′
n

P ′
n−1 ker(dP ′

n−2)

f ′′
n

−f ′′
n−1◦dP ′′

n

dP ′
n−1
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with a morphism f ′′
n such that it commutes.

This way we can define all the chain maps, which allows us to conclude our proof
of the Horseshoe Lemma.
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